2015高考物理二十二个知识点公式解析

2019-11-17 14:41:05

1 2 3 下一页

  一 气体的性质公式总结

  1.气体的状态参量:

  温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志

  热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}

  体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

  压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:

  1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

  2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

  3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}

  注:

  (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

  (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

  二 运动和力公式总结

  1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

  2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

  3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

  4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

  5.超重:FN>G,失重:FN

  6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

  注:

  平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

  三 力的合成与分解公式总结

  1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

  2.互成角度力的合成:

  F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

  3.合力大小范围:|F1-F2|≤F≤|F1+F2|

  4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

  注:

  (1)力(矢量)的合成与分解遵循平行四边形定则;

  (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

  (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

  (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

  (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

  四 常见的力公式总结

  1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

  2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

  3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

  4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

  5.万有引力F=Gm1m2/r2 (G=6.67×10-11N m2/kg2,方向在它们的连线上)

  6.静电力F=kQ1Q2/r2 (k=9.0×109N m2/C2,方向在它们的连线上)

  7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

  8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

  9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

  注:

  (1)劲度系数k由弹簧自身决定;

  (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

  (3)fm略大于μFN,一般视为fm≈μFN;

  (4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

  (5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

  (6)安培力与洛仑兹力方向均用左手定则判定。

  五 万有引力公式总结

  1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

  2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N m2/kg2,方向在它们的连线上)

  3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

  4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

  5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

  6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

  注:

  (1)天体运动所需的向心力由万有引力提供,F向=F万;

  (2)应用万有引力定律可估算天体的质量密度等;

  (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

  (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

  (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

  六 匀速圆周运动公式总结

  1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf

  3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

  5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

  7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

  8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

  注:

  (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

  (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大

  七 平抛运动公式总结

  1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

  3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2

  5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

  6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2,合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

  7.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo

  8.水平方向加速度:ax=0;竖直方向加速度:ay=g

  注:

  (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

  (2)运动时间由下落高度h(y)决定与水平抛出速度无关;

  (3)θ与β的关系为tgβ=2tgα;

  (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

  小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

  八 竖直上抛运动公式总结

  1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

  3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)

  5.往返时间t=2Vo/g (从抛出落回原位置的时间)

  注:

  (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

  (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

  (3)上升与下落过程具有对称性,如在同点速度等值反向等。

  九 自由落体运动公式总结

  1.初速度Vo=0 2.末速度Vt=gt

  3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

  注:

  (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

  (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

  十 匀变速直线运动公式总结

  1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as

  3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

  5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t

  7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

  8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 1 2 3 下一页