数学学习应是一个“学(习得)、做(练习)、想(策略、反省)”有机结合、相互渗透的过程。对于数学学习,操作运算行为是数学认知的基础行为,但如果学生在对概念、法则等了解甚浅,甚致还处于模糊不清状态时就去解题,就去解有一定难度的题,在解题过程中又缺少对“双基”及解题过程的回顾与反思,而仅仅靠盲目的“熟”能生“巧”,那么,这样的“熟”是什么“熟”呢?可能只是解题“套路”的“熟”;这样的“巧”是什么样的“巧”呢?可能只是一些解题“小巧门”而已,恐怕很难真正获得其中蕴涵的数学思想、观念。常常是题目做了一大堆,方法还是老一套。因此从某种意义上来说,我们教育工作者教学的行动指南,不应只是讲课与布置作业,考试与评讲试卷,不能用练习册、练习卷去填满学生的课余时间,更重要的是要指导学生学会学习。首先要让学生认识到数学的用途,它本身就是个工具。另外,中学学习是个打基础的过程,在学数学的过程中,可以发掘学生的逻辑思维能力、分析问题的能力和解决问题的能力,这是终身受益的。所以,归根到底是要教给学生学数学的能力。下面从概念学习,怎样解题,怎样复习三个方面来谈谈对学生的学法指导。
㈠概念学习
数学教学中要重视教学过程的教学。也就是知识产生、发展过程的教学,要把来龙去脉给学生讲清楚。比方说一个公式,为什么要提出这样一个问题,这个公式是如何通过具体问题把它推导出来,并将它抽象为一般的结论,成为一个公式、一个定理的?要给学生把这个讲清楚。目的有两个,一是让学生认识知识发生的过程,他能够理解公式、定理、法则的推导过程,他就不会去死记硬背。第二,把这个给学生讲清楚后,他就能自己主动学习,并从知识形成、发展过程当中,理解到学会它的乐趣;在解决问题的过程中,体会到成功的喜悦。
㈡怎样解题
学数学就要做题,做数学题时针对不同层次的学生可提出三种不同的要求:对于基础比较好的同学,应该是先做后看。先做题,做完后再看同学怎么做的,老师怎么讲的,再看参考书怎么写的,然后去比较还有没有别的办法,有没有更好的方法,有比较有鉴别才有收获,懂得哪种方法好在什么地方,掌握这一点,可能就能解决很多问题。对于学习能力稍差一些,基础稍稍一般一些的同学,可以边做边看,做了一部分,做不下去,可以请教一下别人,可以翻翻书,找找资料,受受启发再做。第三种,基础比较差的学生,先看后做,可以先问问别人,或是找老师帮你点一点可以怎么考虑,再自己动手做,这样,就能使不同层次的学生,在不同的程度上得到提高。
具体做题时有三个步骤:想一想,做一做,看一看。看到题目后,想它涉及到哪些基础知识,哪些基本方法,想它考你什么?拿到题就动手做题习惯不好,很盲目,时间浪费了,还做不出来,想好了再动手,不管能不能做到底能不能做对,都得要做,回头看一看,还有没有更好的办法,书上怎么讲的,老师怎么做的,回想联想再猜想,这样一比较,就能领悟到很多东西。
数学题靠做。对于教师来讲,要告诉学生怎么做题,帮助他克服做题当中的困难,碰到一个问题,要先想这个问题可以分成几个步骤来解决,我们把它叫做难题分解法,即把一个难题分成若干个基本问题,如果学生有了这个分解的能力,什么难题都可以做。
所以教师要通过教学把学生的能力提上去,老师讲题时,要把为什么这样做给学生讲得很清楚,而不只是教给学生一些死的方法,死的解题的模式,落脚点要放在提高学生学数学的能力。
㈢怎样复习
数学复习应从“反思”、“整合”、“运用”、“创新”这四个方面去考虑,在数学学习过程中,使学生有一个清醒的复习意识,逐渐养成良好的复习习惯,从而逐步学会学习。
1、反思
数学复习应是一个反思性学习过程。首先,对所学习的知识、技能进行反思。本课、本单元或本章涉及哪些知识,有没有达到所要求的程度;其二,对所蕴涵的数学思想方法进行反思,中学数学中蕴涵着丰富的数学思想与方法,在复习过程中,反思一下学习中涉及到了哪些数学思想方法,这些数学思想方法是如何运用的,运用过程中有什么特点,这样的思想方法是否在其他情况下运用过,现在的运用与过去的运用有何联系、有何差异,有无规律;其三,对基本问题(包括基本图形、图象等)典型问题时进行反思。反思一下本单元有哪些基本问题,哪些典型问题,有没有真正弄懂弄通了,平时碰到的问题中有哪些问题可归结为这些基本问题。其四,对自己的错误进行反思。准备一本纠错本,把平时犯的错误记下来,并且经常地拿出来看看、想想错在哪里,为什么会错。最后,作为教师,更应该对所教的内容(知识的结构体系、思想方法、前后联系等)、教学过程(有无疏漏)、学生的学习情况(哪些内容学生可能存在问题,哪些学生可能需要个别辅导)等作一个整体的反思。
2、整合
数学复习应是一个整合知识的学习过程。在反思的基础上,一要梳理知识,理清脉络,教材每章后都给了我们一个良好的知识复习提要,我们应用好它,把它变为自己头脑中的清晰的知识结构图。二要有系统、多方位地去探寻知识之间的内在联系。三是从数学知识中提炼、概括出对数学内容的本质认识,解决问题的一般方式,途径和手段。整合过程,就是一个把书由厚读薄的过程,是一个用数学的思想方法去重新组织所学知识的过程,是一个建立联系、深化理解的再学习过程。
3、运用
数学复习应在数学知识的运用过程中进行。对于中学生来说,学习是目的,运用是为了学习,即通过运用,达到深化理解、发展能力的目的。首先,应把新知识的学习与学生已有的知识经验结合起来,在新知识的学习过程中善于运用已有的知识。其二,在数学解题学习中,要把审题、解题后的回顾、反思作为重点,在“前思后想”中总结相关知识的作用、意义,变潜意识运用数学概念、性质等为显意识运用,变盲目碰撞为有目的、有策略地运用,变机械性练习在数学思想方法指导下的探究性解题。其三,在日常生活中,要善于用数学的眼光去看待现实问题。
4、创新
数学复习应是一个温故知新的学习过程,在“创新”意识的指导下,我们就会努力去搜索与问题相关知识,多方位、多角度地去看待问题,从而达到对有关知识的活的复习、运用——对知识的一种最佳组合。在“创新”意识下的复习,就会真正注重“双基”的基础性、生长点,就不会就事论事,简单重复,概念、性质要努力探寻其与其他知识之间的逻辑联系,在总结一般规律的同时还应挖掘其新的意义、新的作用;在数学解题练习中,特别是对典型题,要多想一想,还有没有其他新解法,有没有更简捷的解法,代数问题能否用几何方法来解,能否用三角、向量等方法来解,等等;在开放题的求解过程中,不仅要重视解法的多样性,答案的不惟一性,更要重视方法及解答过程的比较与鉴别,在比较与鉴别中复习所运用的数学思想方法,所运用的知识、技能。
正确理解数学概念是学好数学的前提条件,读概念时应注意概念的内涵和外延;数学的每一个命题有其真假,当你要证明或求解某一个命题时,必须先分清命题中哪些是条件,哪些是所求(或所证),正确理解每个数学语言,逐字逐句翻译成数学式子方能把握题目的意图,如果能画出几何图形(模型)则有助于帮助理解题意,找到解题途径。对题中明显的已知和未知(需求条件)弄清楚后,还要挖掘题目中隐含条件,当你将题目中的相关信息找出后,一般从所求(证)结论开始分析需要什么条件进行逆向分析,寻找解题途径,还可采用回想、联想、猜想等办法将条件与结论联结起来,如果所给条件结论较繁则应进行等价化简后再分析,化归为学过的典型题的模式后就可按部就班进行解题了。有不少题目还可通过间接办法进行思考求解,有时采用定义法、图解法、参数法、反证法、补集法可以独树一帜,迅速求解。答题时要严谨规范,步步有根据,讨论时要分类明确,不重复不遗漏。学会一题多解能深化对数学问题的理解和数学知识的应用,提高数学素养,注意多题一解能把握数学知识的精髓,把书由厚读薄,不断积累数学思想和数学方法,学会分类、归纳、演绎、推理将学数变成为真正的训练人脑思维的体操。
来源:丰城山林岗徐智华工作室