计算无处不在。
走进一个机房,在服务器排成的一道道墙之间,听着风扇的鼓噪,似乎能嗅出0和1在CPU和内存之间不间断的流动。从算筹算盘,到今天的计算机,我们用作计算的工具终于开始量到质的飞跃。计算机能做的事情越来越多,甚至超越了它们的制造者。上个世纪末,深蓝凭借前所未有的搜索和判断棋局的能力,成为第一台战胜人类国际象棋世界冠军的计算机,但它的胜利仍然仰仗于人类大师赋予的丰富国际象棋知识;而仅仅十余年后,Watson却已经能凭借自己的算法,先“理解”问题,然后有的放矢地在海量的数据库中寻找关联的答案。长此以往,工具将必在更多的方面超越它的制造者。而这一切,都来源于越来越精巧的计算。
计算似乎无所不能,宛如新的上帝。但即使是这位“上帝”,也逃不脱逻辑设定的界限。
第一位发现这一点的,便是图灵。
矛盾的自我指涉
在现实中,证明某种东西不存在是非常困难的。要证明某种东西存在,只要举出一个例子就可以了;但要证明某种东西不存在,就要想办法排除所有的可能性,而在现实生活中,这几乎是不可能的。所以,只要能排除那些比较主要的可能性,任务就算完成。但在数学中,情况大不相同:通过形式逻辑的方法,我们可以确实地证明某种数学对象不存在。这都要归功于数学那彻底的抽象化和形式化。
数学家在证明某个数学对象不存在的时候,经常会来一招“欲擒故纵”:首先假设它存在,那么它必然具有某些特定的性质,再利用这些性质,用严密的逻辑推理引出一个不可能的结论。既然结论是不可能的,而逻辑推理又没有问题,那么一定是推理的出发点出了差错:作为推理基础的那个东西,其实并不存在。这种证明方法,就是反证法。
现在,我们尝试用反证法证明停机问题是不可计算的。
按照反证法的格式,我们先反其道而行之,假设停机问题是可以计算的。根据定义,这说明存在一台图灵机P,使得向它输入某个图灵机M的状态转移表编码,以及初始输入I,图灵机P就能在有限步运算内,判断出机器M在输入I上是否会停止。
接下来,我们将要用图灵机P构造一个逻辑上不可能存在的结构,这将是证明的关键。
我们来考虑一个新的图灵机R,它的输入是某个图灵机M的状态转移表编码<M>。图灵机R先“调用”图灵机P,判断图灵机M在初始输入<M>上是否会停止。用现代的计算机语言来说,就相当于调用函数P(<M>,<M>)。如果图灵机P得出的结论是机器M在输入<M>上会停止的话,图灵机R接下来就会进入死循环;否则,如果机器M在输入<M>上不会停机的话,图灵机R就停止。
图灵机R的构造有两个奇怪之处。
首先,在图灵机R的运作中,它尝试判断一台图灵机M在它自身的编码<M>上的运作情况。此时,图灵机M不仅是程序,同时也是数据。这提醒我们,其实程序和数据没有实质的区别。程序只是一种特殊的数据,能够被分析、整理、改写。
事实上,我们每天都在使用处理程序的程序。比如说杀毒软件,其实就是一种扫描程序的程序。它检查每个程序的内容,判断程序中有没有威胁计算机安全的恶意代码。用杀毒软件扫描它自身,实际上就是让这个程序运作在它自身的代码之上。我们也可以用记事本打开记事本的程序本身,或者用压缩软件打一个包含它程序本身的压缩包。这些例子都说明了一个道理:程序就是一种数据。正因为程序就是数据,我们才得以完成图灵机的自我指涉。
其次,在图灵机R的构造中,如果M在输入<M>上停机,那么R就不停机;如果M在输入<M>上不停机,那么R就停机。这就是说谎者悖论的翻版:它的行为要与自己的判断相悖。
这样,我们就凑齐了说谎者悖论的两个要素:自我指涉和自我否定。剩下的,就是如何将这两个要素组合在一起,引出不可调和的矛盾了。
1 2 3 下一页
计算的极限(二)自我指涉与不可判定
2019-10-30 11:01:14
1 2 3 下一页
相关推荐
- 初中物理实验教学策略探究 2019-10-07 20:33:44
- 理所当然的近义词 2019-11-25 14:11:46
- 杨无敌 2019-10-29 16:42:22
- 上海一本院校分数线 2019-11-23 20:07:54
- 广西钦州水利:我没权老板却拼命塞钱 2019-12-08 15:48:50